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Example cars 
The curb weight, battery pack weight and fuel/electricity consumption data (WTLP2) of the 
following Volkswagen Golf models (2018) were used in comparing different fuel and engine 
options: Volkswagen Golf Comfortline 1.0 TSI 85 kW, Volkswagen Golf Trendline 1.6 TDI 85 
kW, Volkswagen Golf 1.4 TGI 81 kW and Volkswagen e-Golf 100 kW. In calculations, no 
other factory data were used.  

Excerpts 
Considering CO2e: 

 New electric car beats new diesel car after 28 000 km in Finland. 
 New electric car beats new gasoline car after 26 000 km in Finland. 
 New electric car beats old diesel car after 72 000 km (old diesel car still has driving, 

fuel cycle, maintenance and end-of-life emissions – but not the emissions from 
manufacturing a car) in Finland. 

 Electric car in Finland beats biogas car after 203 000 km in Finland (if there is no 
battery pack replacement) 

 Electric car with biogas electricity beats biogas ICE car after 120 000 km. 
 Electric car with biogas electricity beats biogas ICE car after 245 000 km, if the battery 

pack is replaced once. 

Considering euros: 

 In Finland, CNG (compressed natural gas) gas car gives cheapest life-time kilometers 
followed by CBG (compressed biogas).  

 In Finland, lifetime costs are about equal for e-Golf, gasoline Golf and diesel Golf.  
 January 2019 prices and taxes were used for the whole lifetime of the car. 

 

 

 

 

                                                      
2 The worldwide harmonized light vehicles test procedure (WLTP) is a global harmonized standard 
for determining the levels of pollutants and CO2 emissions, fuel or energy consumption, and electric 
range from light-duty vehicles (passenger cars and light commercial vans). (Wikipedia) 
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Global warming potential (carbon footprint) 
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Economics and tax revenues 
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Environmental impacts of dedieselisation of the car fleet in Finland 
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Data  
Below car component and material data and electricity/fuel data are given in detail. 

Car components and materials 
Table 1. Volkswagen Golf Comfortline 1.0 TSI 85 kW, gasoline, 5.7 L/100 km. Car 
components (generic data). 

Component group All vehicles 
(kg) 

ICEV only 
(kg) 

ICEV 
(kg) 

Body and doors 528.21   

Brakes 12.28   

Chassis 15.58   

Fluids ICEV and EV 5.02   

Vehicle interior and exterior 238.43   

Tyres and wheels 79.61   

Total 879.13   

Engine (ICEV)  170.75  

Fluids (ICEV only)  5.02  

Other ICEV powertrain  92.55  

ICEV transmission  52.03  

ICEV battery  16.52  

Total  336.86  

Car weight   1216.00 

 

Table 2. Volkswagen Golf Trendline 1.6 TDI 85 kW, diesel, 4.9 L/100 km. Car components 
(generic data). 

Component group All vehicles 
(kg) 

ICEV only 
(kg) 

ICEV 
(kg) 

Body and doors 565.13   

Brakes 13.14   

Chassis 16.67   

Fluids ICEV and EV 5.37   

Vehicle interior and exterior 255.10   

Tyres and wheels 85.18   

Total 940.58   

Engine (ICEV)  182.69  

Fluids (ICEV only)  5.37  

Other ICEV powertrain  99.02  

ICEV transmission  55.66  

ICEV battery  17.68  

Total  360.41  

Car weight   1301.00 
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Table 3. Volkswagen Golf 1.4 TGI 81 kW, methane, 3.6 kg/100 km. Car components (generic 
data). 

Component group All vehicles 
(kg) 

ICEV only 
(kg) 

ICEV 
(kg) 

Body and doors 572.08   

Brakes 13.30   

Chassis 16.88   

Fluids ICEV and EV 5.43   

Vehicle interior and exterior 258.24   

Tyres and wheels 86.22   

Total 952.15   

Engine (ICEV)  184.93  

Fluids (ICEV only)  5.43  

Other ICEV powertrain  100.24  

ICEV transmission  56.35  

ICEV battery  17.89  

Total  364.84  

Car weight   1317.00 

 

Table 4. Volkswagen e-Golf 100 kW, electricity, 15.6 kWh/100 km (grid electricity 
consumption). Car components (generic data). 

Component group All vehicles 
(kg) 

EV only 
(kg) 

EV 
(kg) 

Body and doors 566.03   

Brakes 13.16   

Chassis 16.70   

Fluids ICEV and EV 5.38   

Vehicle interior and exterior 255.51   

Tyres and wheels 85.31   

Total 942.09   

EV motor and transmission  304.36  

EV differential transmission  38.56  

EV Li-NCM battery  330.00  

Total  672.92  

Car weight   1615.00 
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Table 5. Volkswagen Golf, car materials. Some materials are lumped together (generic data). 

Material Volkswagen 
Golf 
Comfortline 
1.0 TSI 85 kW 
(kg) 

Volkswagen 
Golf Trendline 
1.6 TDI 85 kW 
 
(kg) 

Volkswagen 
Golf 1.4 TGI 81 
kW Gas  
 
(kg) 

Volkswagen e-
Golf 100 kW 
 
 
(kg) 

Volkswagen e-
Golf 100 kW 
with extra 
battery pack 
(kg) 

Plastics: 178.35 190.82 193.17 183.37 202.18 

Polyethylene 16.31 17.45 17.66 13.43 13.43 

Polypropylene 83.51 89.35 90.45 76.96 91.81 

Polystyrene 34.11 36.50 36.95 42.91 46.87 

Polyethylene 
terephthalate 

29.38 31.43 31.82 33.10 33.10 

Polyvinylchloride 15.05 16.10 16.30 16.96 16.96 

Metals (non-ferrous):  109.86 117.54 118.98 299.24 452.03 

Aluminum 73.18 78.30 79.26 167.89 239.50 

Copper (manganese, 
cobalt, nickel) 

36.68 39.24 39.72 131.35 212.53 

Metals (ferrous):  807.70 864.16 874.78 835.49 835.82 

Pig iron 24.10 25.78 26.10 3.54 3.54 

Cast iron 131.88 141.10 142.83 5.25 5.25 

Steel RR 635.37 679.78 688.14 799.13 799.13 

Steel OK 16.35 17.49 17.71 27.57 27.90 

Fluids: 14.35 15.35 15.54 95.93 175.79 

Lubricating oil 7.02 7.51 7.61 1.13 1.13 

Refrigerant 4.01 4.29 4.35 3.39 3.39 

Water 3.32 3.55 3.59 91.40 171.26 

Other materials: 105.74 113.13 114.52 200.98 279.19 

Various plastics 33.86 36.23 36.68 38.16 38.16 

Adhesives 4.03 4.31 4.37 18.43 30.64 

Minerals (clay) 5.92 6.33 6.41 3.39 3.39 

Glass 31.78 34.01 34.42 35.44 35.44 

Wood 0.00 0.00 0.00 0.00 0.00 

Rubber (not tyre) 10.06 10.77 10.90 9.82 9.82 

Rubber (tyre) 18.39 19.68 19.92 20.73 20.73 

Sulphuric acid 1.68 1.80 1.82 0.41 0.41 

Lithium 0.00 0.00 0.00 5.22 9.84 

Graphite 0.00 0.00 0.00 69.38 130.76 
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Electricity generation and use 
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Fuels production and use 
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Combustion N2O
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Petroleum , 1.132

Natural gas , 0.169

Coal , 0.001
Coke , 0.006

Diesel production energy consumption (1 MJ product), MJ

19.856

0.012

0.033

1.938

1.062
0.001

0.001

74.100

0.008
0.677

0.149

Diesel GHG emissions, tot 97.8 g CO2e/MJ, gCO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O
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Petroleum , 0.066

Natural gas , 0.084

Coal , 0.002
Biomass , 0.012 Peat , 0.003

Bioverno diesel production energy consumption, raw-
material biomass excluded (1 MJ product), MJ

20.145

0.013

0.042

1.913

0.779

0.001

0.001

69.300

0.021

0.206 0.595

BioVerno diesel GHG emissions, tot 11.8 gCO2e/MJ, g 
CO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O
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Petroleum , 0.060

Natural gas , 0.114

Coal , 0.002

NExBTL diesel (raw material is waste animal fats) 
production energy consumption, biomass excluded (1 MJ

product), MJ

11.045

0.006

0.016
0.461

0.600

0.000

0.001
0.000

0.008 0.677 0.149

NExBTL diesel (raw material is waste animal fats) GHG 
emissions, tot 13.0 g CO2e/MJ, gCO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O
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Petroleum , 0.034

Natural gas , 0.038

Coal , 0.051

Hydro, 0.033

Nuclear, 0.045

Wind , 0.005

Biomass , 0.062

Peat , 0.015

Manure biogas production energy consumption (1 MJ
product), MJ

11.456

0.043

0.115
0.098

9.971

0.000

0.013 0.000

0.133
1.869

0.360

Manure biogas GHG emissions, tot 24.1 g CO2e/MJ, 
gCO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O



 

31 
 

 

 

Petroleum , 0.102

Natural gas , 0.656

Coal , 0.093

Hydro, 0.006

Nuclear, 0.015
Wind , 0.002

Corn ethanol production energy consumption, biomass 
excluded (1 MJ product), MJ

53.118

0.022

0.082

1.904

4.021

13.674

0.003
0.000 0.414 0.355

0.000

Corn ethanol GHG emissions, tot 73.6 g CO2e/MJ, 
gCO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O
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Petroleum , 0.103

Natural gas , 0.027

Coal , 0.003

Sugarcane ethanol production energy consumption, 
biomass excluded (1 MJ product), MJ

9.373

0.007

0.022 0.381

0.177

0.001
0.414

0.355

Sugarcane ethanol GHG emissions, tot 10.7 g CO2e/MJ, 
gCO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O
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Petroleum , 0.150 Natural gas , 0.006
Coal , 0.039

Biomass , 3.005

Wood ethanol production energy consumption (1 MJ
product), MJ

14.984

1.273

2.532

0.472

0.355

0.000

0.327

0.000
0.414 0.355

0.000

Wood ethanol GHG emissions, tot 20.7 g CO2e/MJ, 
gCO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O
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Petroleum , 0.001

Natural gas , 1.233

Coal , 0.004
Nuclear, 0.003

Natural gas to CNG production energy consumption (1 MJ), 
MJ

13.562

0.005

0.009

1.498

6.216

0.000

0.001

56.100

0.133
1.869 0.360

Natural gas to CNG GHG emissions, tot 79.8 gCO2e/MJ, 
gCO2e/MJ

Well-to-fuel energy-based CO2

Well-to-fuel energy-based CH4

Well-to-fuel energy-based N2O

Drilling CO2 removal and flaring
CO2

Venting, flaring and fugitive CH4

Venting, flaring and fugitive N2O

Well-to-fuel CO

Combustion CO2

Combustion CH4

Combustion N2O



 

35 
 

Manufacturing a car 

 

Principles and parameters 

Volkswagen Golf models’ weight and fuel/electricity consumption (WTLP) were used in 
calculations, not the real material and energy use data from Volkswagen manufacturing 
plants. The scientific literature data are used in the calculations. Volkswagen Golf is an 
average-size car in Finland. 

In combined heat and power (CHP) generation, the energy inputs and emissions are 
allocated between heat and power outputs. The principles of the allocation methods are 
explained by Soimakallio and Manninen3: 

 Energy method: primary energy is allocated to heat and power on the basis of the 
energy (enthalpy) content of those products. Burning 100 MJ fuel in a CHP plant 
generates 36 MJe usable electricity and 51 MJ heat. These values are used in this 
analysis. In power generation, the power station losses are taken into account. 

 Exergy method: primary energy is allocated to power and heat on the basis of the 
exergy content of those products. The exergy of power is higher than the exergy of 
heat and thus e.g. the CO2e emissions per kWh for power are higher than in energy 
method. The exergy factors used for power and heat are 1 and 0.24, respectively. 
These values were used by Soimakallio and Manninen. 

                                                      
3 Soimakallio Sampo, Manninen Jussi, Chapter 2: Energy efficiency and the Finnish energy system, in Energy Use – Visions and 
Technology Opportunities in Finland, VTT, Edita, 2007. 
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 Price method: primary energy is allocated to power and heat on the basis of the 
difference between the prices of those products. The price of power is higher than the 
price of heat and thus e.g. the CO2e emissions per kWh for power are higher than in 
energy method. The average household prices for electricity and district heat were 
calculated from 2015 to 2017 and were found to be 16.99 cent/kWh and 7.80 
cent/kWh, respectively4. 

 Benefit sharing method: primary energy is allocated to heat and power on the basis 
of the fuel consumption of the forms of heat and power production replaced by CHP. 
The benefit for power is higher than the benefit for heat and thus e.g. the CO2e 
emissions per kWh for power are higher than in energy method. The efficiencies of 
the replaced heat and power production plants used here equal to 89 % and 36 %, 
respectively. In power generation, the power station losses are taken into account. 
Benefit sharing method is used in this analysis. 

 Partial benefit sharing method: primary energy is allocated to heat on the basis of 
the fuel consumption of alternative heat production, and the remaining share is 
allocated to power. Not calculated in this analysis. 

 No sharing method: primary energy is allocated without sharing, i.e. allocated to 
one product only. If all primary energy is allocated to electricity, e.g. all CO2e 
emissions are allocated to power. 

For electricity generated in Finland: 

 90% steam generator efficiency 
 44% turbine efficiency 
 99% electrical generator efficiency 
 3.8% power station losses (Finnish Energy statistics 2017) 
 3.24% transmission losses (Finnish Energy statistics 2017) 

Battery packs: 

 The carbon footprint of manufacturing a 330 kg and 35.8 kWh battery pack (e-Golf) is 
about 4 ktCO2e. In calculations, it has been assumed that the battery is lithium 
manganese oxide battery that contains no nickel and cobalt. Lithium manganese 
cobalt oxide batteries contain nickel and cobalt, but manufacturing these metals for a 
330 kg battery is not a major source of greenhouse gases (about 260 kg CO2e).    

 There is not yet any second-life applications for the electric car batteries, so all life-
cycle emissions have to be allocated to electric car use. 

 The most energy (electricity) intensive part of battery pack manufacturing is the 
manufacturing of battery cells. They are manufactured in countries with high carbon 
intensity in electricity generation (China, Japan, South Korea, Poland). In this 
analysis, South-Korean electricity mix was used. 

Notifications (figures) 

Electricity generation and consumption data for Finland are from Finnish Energy statistics. 
Peat LULUCF and emissions from the field are taken into account for peat (Statistics 

                                                      
4 Statistics Finland's PX-Web databases, Price of district heating by type of consumer, Price of electricity by type of consumer. 
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Finland's data for years 2010–2014). Export and import data are also from Finnish Energy 
statistics, and the electricity generation data for Sweden, Russia, Norway and Estonia are 
from Energimyndigheten, World Bank, IEA Statistics and Statistics Estonia, respectively. 
Germany electricity generation data is from Fraunhofer Institute for Solar Energy Systems 
ISE and Iceland electricity generation data is from IEA Statistics. 

The carbon footprints i.e. global warming potential life-cycle analyses are carried out from 
cradle to gate. All life-cycle stages and all greenhouse gases are taken into account. This is 
also the case for gasoline and diesel, natural gas and biofuels. 

Figure “Life-cycle carbon footprints of VW Golf (including materials, manufacturing, maintenance, 
driving and end-of-life) as a function of driving distance”: 

 New electric car beats new diesel car after 28 000 km in Finland. 
 New electric car beats new gasoline car after 26 000 km in Finland. 
 New electric car beats old diesel car after 72 000 km (old diesel car still has driving, 

fuel cycle, maintenance and end-of-life emissions – but not the emissions from 
manufacturing a car) in Finland. 

 Electric car in Finland beats biogas car after 203 000 km in Finland (if there is no 
battery pack replacement) 

 Electric car with biogas electricity beats biogas ICE car after 120 000 km. 
 Electric car with biogas electricity beats biogas ICE car after 245 000 km, if the battery 

pack is replaced once. 

Figures “Volkswagen Golf in Finland (298 000 km, WLTP consumption), gCO2e/km” and 
“Volkswagen Golf in Finland (298 000 km, WLTP consumption), tCO2e/lifetime”: 

 The CHP share values are from Finland 2017 electricity mix. 
 Lifetime distance of an average car used in calculations is 298 000 km.5 
 In Finland in 2017, diesel fuel contained 4.1 vol-% HVO biodiesel (assumption 2.05 

vol-% NExBTL biodiesel and 2.05 vol-% BioVerno biodiesel). 
 In Finland in 2017, gasoline contained 7.71 vol-% ethanol (assumption 3.76 vol-% 

Brazilian sugarcane ethanol, 3.76 vol-% U.S. corn ethanol and 0.19 vol-% Finnish 
cellulosic ethanol). 

 In real life (own two-year experiment with gas Touran), 4.7% of fuel is gasoline (by 
energy content).  

 NExBTL and BioVerno biodiesels have 4.9% higher fuel consumption by volume 
than petroleum diesel due to lower volumetric energy content of HVO diesel. 

 E85 has 37.3% higher fuel consumption by volume than petroleum gasoline.6 

Figure “Life-cycle costs of Volkswagen Golf in Finland (298 000 km, WLTP consumption), thousand 
euros”: 

 Fuel price 
o Gasoline 1.50 e/L 
o Diesel 1.40 e/L 

                                                      
5 Klemola Kimmo, Life-cycle energy consumption and carbon dioxide emissions of world cars, Lappeenranta University of 
Technology, 2006. 
6 Model year 2007 fuel economy guide, U.S. Environmental Protection Agency. 
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o Compressed biogas 1.45 e/L 
o Compressed natural gas 1.32 e/L 
o Electricity 0.14 e/kWh  
o Today’s prices are assumed for the whole lifetime. 

 Insurance, service, repair etc. 1000 e/year 
 Vehicle tax 

o Volkswagen Golf Comfortline 1.0 TSI 85 kW: 194.18 e/year 
o Volkswagen Golf Trendline 1.6 TDI 85 kW: 558.08 e/year 
o Volkswagen Golf 1.4 TGI 81 kW Gas: 375.95 e/year 
o Volkswagen e-Golf 100 kW (136 hp) automatic: 221.18 e/year 
o Today’s taxes are assumed for the whole lifetime. 

 In Finland, CNG (compressed natural gas) gas car gives cheapest life-time kilometers 
followed by CBG (compressed biogas).  

 In Finland, lifetime costs are about equal for e-Golf, gasoline Golf and diesel Golf.  
 January 2019 prices and taxes were used for the whole lifetime of the car. 

Figure “Global annual sales of plug-in electric passenger cars in world's top markets 2011–
2017” is from https://en.wikipedia.org/wiki/Electric_car. In 2017, the sales of electric cars was 
about 1.15 million globally. In 2018, the number of sold electric cars was probably over 2 
million. About 71 million passenger cars were sold in the world in 2017, and in total about 
97 million motor vehicles (International Organization of Motor Vehicle Manufacturers). 

Japanese Panasonic, South-Korean LG Chem and Samsung SDI and Chinese BYD are the 
four major manufacturers in EV battery cell technologies. The patent trend analyses for this 
report were provided by TurnIP (http://www.turnip.co.in). 
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